Existence theories and exact solutions of nonlinear PDEs dominated by singularities and time noise
نویسندگان
چکیده
The current research deals with the exact solutions of nonlinear partial differential equations having two important difficulties, that is, coefficient singularities and stochastic function (white noise). There are four major contributions to contemporary research. One is mathematical analysis where explicit a priori estimates for existence constructed by Schauder’s fixed point theorem. Secondly, control solution behavior subject singular parameter ϵ when → 0. Thirdly, impact noise present in equation has been successfully handled solutions. final contribution simulate explain plots.
منابع مشابه
existence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types
بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی بیان شده اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...
15 صفحه اولGalilean-invariant Nonlinear PDEs and their Exact Solutions
All systems of (n+1)-dimensional quasilinear evolutional secondorder equations invariant under the chain of algebras AG(1.n) ⊂ AG1(1.n) ⊂ AG2(1.n) are described. The obtained results are illustrated by examples of nonlinear Schrödinger equations.
متن کاملExact Traveling Wave Solutions of Nonlinear PDEs in Mathematical Physics
In the present article, we construct the exact traveling wave solutions of nonlinear PDEs in mathematical physics via the variant Boussinesq equations and the coupled KdV equations by using the extended mapping method and auxiliary equation method. This method is more powerful and will be used in further works to establish more entirely new solutions for other kinds of nonlinear partial differe...
متن کاملExact Traveling Wave Solutions for Coupled Nonlinear Fractional pdes
In this paper, the ( / ) G G -expansion method is extended to solve fractional differential equations in the sense of modified Riemann-Liouville derivative. Based on a nonlinear fractional complex transformation, certain fractional partial differential equations can be turned into ordinary differential equations of integer order. For illustrating the validity of this method, we apply it to fi...
متن کاملNONLINEAR EVOLUTION PDES IN R+ × Cd: EXISTENCE AND UNIQUENESS OF SOLUTIONS, ASYMPTOTIC AND BOREL SUMMABILITY PROPERTIES
= 0; u(x, 0) = uI(x) with u ∈ C, for t ∈ (0, T ) and large |x| in a poly-sector S in C (∂ x ≡ ∂ j1 x1∂ j2 x2 ...∂ jd xd and j1 + ... + jd ≤ n). The principal part of the constant coefficient n-th order differential operator P is subject to a cone condition. The nonlinearity g and the functions uI and u satisfy analyticity and decay assumptions in S. The paper shows existence and uniqueness of t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nonlinear Analysis-Modelling and Control
سال: 2023
ISSN: ['1392-5113', '2335-8963']
DOI: https://doi.org/10.15388/namc.2023.28.30563